

Memorandum

То	Julian Reweti
Сору	
From	James Gladwin
Office	Whakatane Office
Date	16 May 2017
File	2-34250.11
Subject	Edgecumbe Urgent Sediment Sampling

Introduction

Opus International Consultants were engaged on 01 May 2017 to complete some urgent sediment sampling in the Edgecumbe Township following a breach of the stopbank on 06 April 2017. There were concerns that heavy metals may be a contaminant of concern from the sewer system and the oxidation ponds that overflowed during the storm event.

At the same time Opus were asked to check for and test any sediment deposits around the old sawmill based on Kowhai Avenue because of the perceived potential for Copper, Chromium and Arsenic contamination from the CCA treatment that has occurred onsite.

Site Visit

A site visit was completed on 01 May 2015 and the area surrounding the Kowhai Avenue Sawmill site was inspected first. No observable sediment deposits were found. A nearby low basin was also checked and this was also found to be clear of silt. No samples were taken from either of these locations.

Focus then moved onto the northern part of Edgecumbe as shown by the attached monitoring plan and site photos. Here, silt was found stockpiled on the side of the road as part of the ongoing clean-up process. Table 1 shows the description of photos taken of the sampling points and surrounding areas. Site photos have been appended to this memo.

Photo	Description
1	Kowhai Ave, looking south towards the wastewater pumpstation
2	Kowhai Ave, looking north from the wastewater pumpstation
3	Low land reserve between Totara St and Rimu St.
4	Sediment stockpile, Sample Point 1
5	Sediment stockpile, Sample Point 2
6	Sediment stockpile, Sample Point 3
7	Sediment stockpile, Sample Point 4
8	Sediment stockpile, Sample Point 5
9	Washed under fence, Sample Point 6
10	Sediment discharge onto school field, Sample Point 7
11	Panoramic of the school field
12	Grass die off on school field as a result of prolonged water submersion

Table 1 - Site photograph descriptions

13	Grass die off on school field as a result of prolonged water submersion
14	Cricket crease
15	Edge of cricket crease, Sample Point 8
16	Sediment on edge of Edgecumbe College tennis courts, Sample Point 9
17	Close up following sampling of sample point 9 showing dark sub layer
18	Sediment stockpile, Sample Point 10

Sampling and Analysis Plan and Field Quality Assurance Quality Control (QA/QC)

Opus were contracted to sample the sediments around Edgecumbe and have them analysed for metals. The attached sample plan shows where the sediments were sampled.

Sediments samples were taken on 01 May and sent to Hill laboratories for analysis of metals. Weather conditions were fine with periods of cloud. All samples were taken from a depth of 0 to 15cm using a stainless steel trowel. Decontamination of equipment was completed between each sample locations using clean water. Disposable nitrile gloves were worn whilst completing the sampling and changed between sample locations. All samples were sent to Hill laboratories for metals analysis. No blind replicas were completed for the sampling. A chain of custody (COC) form from Hill Laboratories has been provided.

Laboratory QA/QC

The Hill Laboratory Analysis report has been appended for perusal. This includes the analytical methods used by the laboratory and the laboratory accreditation for analytical methods used.

All Laboratory Analysis was completed through Hill Laboratories. Hill Laboratories are accredited by International Accreditation New Zealand (IANZ), which represents New Zealand in the International Laboratory Accreditation Cooperation (ILAC). Through the ILAC Mutual Recognition Arrangement (ILAC-MRA) this accreditation is internationally recognised.

Basis for Guideline Values

Soil Contaminant Standards (SCSs) were selected from the Ministry for the Environment's "Contaminated Land Management Guidelines – Methodology for Deriving Standards for Contaminants in Soil to Protect Human Health" and the "User's Guide – National Environmental Standard for Assessing and Managing Contaminants in Soil to Protect Human Health".

The "Rural residential/ Lifestyle block 25% produce" values found in "Table B2 – Soil Contaminant Standards for health (SCS (health)) for inorganic substances" has been provided in Table 2. These SCSs are the most conservative listed and have been selected on the basis that residents, kindergarten and primary school children are receptors at risk.

	Arsenic mg/kg		Cadmium (pH 5) ¹ mg/kg	Chromium			Inorganic	Inorganic
				Ш	VI mg/kg	Copper mg/kg	lead mg/kg	mercury mg/kg
				mg/kg				
Rural residential / lifestyle block 25% produce	17	>10,000	0.8	>10,000	290	>10,000	160	200
Residential 10% produce	20	>10,000	3	>10,000	460	>10,000	210	310
High-density residential	45	>10,000	230	>10,000	1,500	>10,000	500	1,000
Recreation	80	>10,000	400	>10,000	2,700	>10,000	880	1,800
Commercial / industrial outdoor worker (unpaved)	70	>10,000	1,300	>10,000	6,300	>10,000	3,300	4,200

Table 2 – "Soil Contaminant Standards for health (SCS (health)) for inorganic substances".

New Zealand does not have soil contaminant standards specific to Nickel and Zinc.

"For contaminants that are not priority contaminants and/or for land uses that fall outside the five standard land-use exposure scenarios, the NES mandates the approach to be taken to select the applicable standard for the soil. In this case, either a site-specific soil guideline value can be derived (in accordance with the Methodology), or a guideline value can be chosen from national and international literature in accordance with the following document: Contaminated Land Management Guidelines No. 2 – Hierarchy and Application in New Zealand of Environmental Guideline Values (Revised 2011) (referred to in the Users' Guide as CLMG No.2)"

The CLMG2 states that "The principles and basis for a hierarchy of environmental guideline values as contained in reference documents, including those documents most commonly used by contaminated site practitioners in New Zealand, is described and the hierarchy established. This hierarchy determines the order in which guideline values contained in those reference documents should be used in a contaminated site assessment. The hierarchy is:

- 1. New Zealand documents that derive risk-based guideline values
- 2. rest-of-the-world documents that derive risk-based guideline values
- 3. New Zealand documents that derive threshold values
- 4. rest-of-the-world documents that derive threshold values."

On this basis the SCS have been taken from the Canadian risk based guideline values for residential land and are 50 mg/kg and 200 mg/kg respectively.

The Bay of Plenty Regional Council (BOPRC) have released the Interim Environmental Health Soil Contaminant Standards for the Bay of Plenty Region which are outlined in Table 3.

	Arsenic	Boron	Cadmium (pH 5)	Chromium	Copper	Inorganic Lead	Inorganic mercury	Nickel	Zinc
	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg
Environmental	100	-	7.5	400	325	250	0.75	105	400

Table 3 : BOPRC Interim Environmental Health Soil Contaminant Standards

Summary of Analytical Results

A complete record of laboratory analytical results and statistical summary completed using ProUCL has been attached.

A summary of the analytical results with SCS for human health and the environment is provided in Table 4. No identified SCS were exceeded.

Sample(s)	Analyte	Max Concentration (mg/kg)	Mean Concentration (mg/kg)	95% UCL (mg/kg)	Human Health SCS (mg/kg)	Environmental Guideline (mg/kg)	Exceedances of SCS
1 to 10	Arsenic	10	5.9	7.074	17	100	0
	Cadmium	0.1	0.01	0.0536	0.8	7.5	0
	Chromium	19	9.5	11.59	290	400	0
	Copper	17	11.2	13.15	10000	325	0
	Lead	17.9	14.35	16.11	160	250	0
	Nickel	9	5.5	6.417	50	105	0
	Zinc	195	76.1	100.9	200	400	0

Table 4 - Summary of analytical results (Exceedances are highlighted in yellow)

Conclusions

Metal analysis completed by Hill Laboratories show that levels detected are below the identified Soil Contaminant Standards and are not considered a risk to human health or the environment.

The elevation of zinc from sample 9 which was located on the Edgecumbe College tennis court is considered to be a result of the sample locations proximity to galvanised fencing. The zinc was likely in the lower (darker) layer of material as shown in images 16 and 17 and is considered to have been present onsite prior to the flood.

any not conform to LINZ guidelines 2008.

Crown Copyright. Note:

taken as approximate only. Not to be substituted for site specific survey. May contain LINZ data

ion 3.0 New Zealand

Photo (3)

Photo (4)

Photo (5)

Photo (6)

Photo (7)

Photo (8)

Photo (9)

Photo (10)

Photo (11)

Photo (12)

Photo (13)

Photo (15)

Photo (17)

Photo (18)

Astress PO Box 800, Whakatane 3158	ANALYSI STREETIEST R J H8 Laboratories Limited 1 Clyde Street Humilion 3218 Private Bag 2005 Hamilton 3210 New Zeatard T 6608 H8LL LAB per 655 22 T 464 7 658 2000 T 464 7 658 7 65
Phone 07 308 0139 Moder Email Charge To OPUS International Consultants 14886 Clear Reference Ungent Sediments Creartie Results To Reports all to analist to Premay Context by delast	Sent to Hill Laboratories Main & Time: 01/05/17 16 00 Neme: 5G1a.d.w.p. Signature: 5G2 Received at Hill Laboratories Neme: 5G1a.d.w.p. Signature: 5G2 Neme: 5G1a.d.w.p. Signature: 5G2 Neme: 5G1a.d.w.p. Signature: 5G2 Neme: 5G1a.d.w.p. Signature: 5G2 Neme: 5G1a.d.w.p. Signature: 5G2 Neme: 5G1a.d.w.p. Signature: 5G2 Neme: 5G2 Signature: 5G2 Neme: 5G2 Signature: 5G2 Neme: 5G2 Signature: 5G2
Email Primary Contact Email Submitter Email Chert Other	Condition Temp: Poor Temp Chilled Prozen (4, %)
ADDITIONAL INFORMATION	Sample & Analysis details checked Signature:
Ounted Sample Tupes	Priority Low Normal High Urgent (ASAP, extra charge apples, please control bit from) NOTE: The estimated language of the types and number of samples and analyses specified on this quote is by 620 pm, 3 sorting skyte following the day of receipt of the samples of the laterative

Quoted Sample Types Sediment (two)

No.	Sample Name		e Sample Type Teat		
1	1	01/05/17	Sediment	Metal Smite as per	quote
2	1	1		1	
3	3				
4	4				
5	5				
6	6				
7	7				
8	8				
9	q			1	
10	10			4	

- T 0508 HILL LAB (44 555 22)
- **T** +64 7 858 2000
- E mail@hill-labs.co.nz
- W www.hill-laboratories.com

Page 1 of 1

Job Information Summary

Client:	OPUS International Consultants	Lab No:	1767560
	J Gladwin	Date Registered:	02-May-2017 6:53 am
	Level 1, 13 Louvain Street	Priority:	Urgent
	Whakatane 3120	Quote No:	85139
		Order No:	
		Client Reference:	Urgent Sediments
		Add. Client Ref:	
		Submitted By:	J Gladwin
		Charge To:	OPUS International Consultants
		Target Date:	05-May-2017 4:30 pm

Samples

Camp	Sampioo						
No	Sample Name	Sample Type	Containers	Tests Requested			
1	101-May-2017	Sediment	GSoil300	Heavy metal screen level As,Cd,Cr,Cu,Ni,Pb,Zn			
2	201-May-2017	Sediment	GSoil300	Heavy metal screen level As,Cd,Cr,Cu,Ni,Pb,Zn			
3	301-May-2017	Sediment	GSoil300	Heavy metal screen level As,Cd,Cr,Cu,Ni,Pb,Zn			
4	401-May-2017	Sediment	cGSoil	Heavy metal screen level As,Cd,Cr,Cu,Ni,Pb,Zn			
5	501-May-2017	Sediment	GSoil300	Heavy metal screen level As,Cd,Cr,Cu,Ni,Pb,Zn			
6	601-May-2017	Sediment	GSoil300	Heavy metal screen level As,Cd,Cr,Cu,Ni,Pb,Zn			
7	701-May-2017	Sediment	GSoil300	Heavy metal screen level As,Cd,Cr,Cu,Ni,Pb,Zn			
8	801-May-2017	Sediment	GSoil300	Heavy metal screen level As,Cd,Cr,Cu,Ni,Pb,Zn			
9	901-May-2017	Sediment	GSoil300	Heavy metal screen level As,Cd,Cr,Cu,Ni,Pb,Zn			
10	1001-May-2017	Sediment	GSoil300	Heavy metal screen level As,Cd,Cr,Cu,Ni,Pb,Zn			

HODS MM Δ R \mathbf{O} F Μ EΤ

The following table(s) gives a brief description of the methods used to conduct the analyses for this job. The detection limits given below are those attainable in a relatively clean matrix. Detection limits may be higher for individual samples should insufficient sample be available, or if the matrix requires that dilutions be performed during analysis.

Sample Type: Sediment						
Test	Method Description	Default Detection Limit	Sample No			
Environmental Solids Sample Preparation	Air dried at 35°C and sieved, <2mm fraction. Used for sample preparation. May contain a residual moisture content of 2-5%.	-	1-10			
Heavy metal screen level As,Cd,Cr,Cu,Ni,Pb,Zn	Dried sample, <2mm fraction. Nitric/Hydrochloric acid digestion, ICP-MS, screen level.	0.10 - 4 mg/kg dry wt	1-10			
Total Recoverable digestion	Nitric / hydrochloric acid digestion. US EPA 200.2.	-	1-10			

Hamilton 3240 New Zealand W www.hill-laboratories.com

T 0508 HILL LAB (44 555 22)

Page 1 of 2

T +64 7 858 2000

E mail@hill-labs.co.nz

A LYSI R S R FPO

Client:	OPUS International Consultants	Lab No:	1767560	SPv1
Contact:	J Gladwin	Date Received:	02-May-2017	
	Level 1, 13 Louvain Street	Date Reported:	04-May-2017	
	Whakatane 3120	Quote No:	85139	
		Order No:		
		Client Reference:	Urgent Sediments	
		Submitted By:	J Gladwin	

Sample Type: Sedimen	nt					
	Sample Name:	1 01-May-2017	2 01-May-2017	3 01-May-2017	4 01-May-2017	5 01-May-2017
	Lab Number:	1767560.1	1767560.2 1767560.3		1767560.4	1767560.5
Heavy metal screen level As,	,Cd,Cr,Cu,Ni,Pb,Zn					
Total Recoverable Arsenic	mg/kg dry wt	5	4	5	8	10
Total Recoverable Cadmium	mg/kg dry wt	< 0.10	< 0.10	< 0.10	< 0.10	< 0.10
Total Recoverable Chromium	mg/kg dry wt	8	8	8	8	19
Total Recoverable Copper	mg/kg dry wt	9	10	10	11	16
Total Recoverable Lead	mg/kg dry wt	13.1	15.5	12.4	15.7	13.8
Total Recoverable Nickel	mg/kg dry wt	5	4	5	5	6
Total Recoverable Zinc	mg/kg dry wt	52	66	63	65	79
	Sample Name:	6 01-May-2017	7 01-May-2017	8 01-May-2017	9 01-May-2017	10 01-May-2017
	Lab Number:	1767560.6	1767560.7	1767560.8	1767560.9	1767560.10
Heavy metal screen level As,	,Cd,Cr,Cu,Ni,Pb,Zn					1
Total Recoverable Arsenic	mg/kg dry wt	6	5	3	6	7
Total Recoverable Cadmium	mg/kg dry wt	< 0.10	< 0.10	0.10	< 0.10	< 0.10
Total Recoverable Chromium	mg/kg dry wt	8	6	9	11	10
Total Recoverable Copper	mg/kg dry wt	10	7	8	14	17
Total Recoverable Lead	mg/kg dry wt	17.6	7.3	14.8	15.4	17.9
Total Recoverable Nickel	mg/kg dry wt	4	4	6	9	7
Total Recoverable Zinc	mg/kg dry wt	56	47	70	195	68

R F н S S UM Μ Α 0 Μ F ()D)

The following table(s) gives a brief description of the methods used to conduct the analyses for this job. The detection limits given below are those attainable in a relatively clean matrix. Detection limits may be higher for individual samples should insufficient sample be available, or if the matrix requires that dilutions be performed during analysis.

Sample Type: Sediment			
Test	Method Description	Default Detection Limit	Sample No
Environmental Solids Sample Preparation	Air dried at 35°C and sieved, <2mm fraction. Used for sample preparation. May contain a residual moisture content of 2-5%.	-	1-10
Heavy metal screen level As,Cd,Cr,Cu,Ni,Pb,Zn	Dried sample, <2mm fraction. Nitric/Hydrochloric acid digestion, ICP-MS, screen level.	0.10 - 4 mg/kg dry wt	1-10
Total Recoverable digestion	Nitric / hydrochloric acid digestion. US EPA 200.2.	-	1-10

This Laboratory is accredited by International Accreditation New Zealand (IANZ), which represents New Zealand in the International Laboratory Accreditation Cooperation (ILAC). Through the ILAC Mutual Recognition Arrangement (ILAC-MRA) this accreditation is internationally recognised.

The tests reported herein have been performed in accordance with the terms of accreditation, with the exception of tests marked *, which are not accredited.

These samples were collected by yourselves (or your agent) and analysed as received at the laboratory.

Samples are held at the laboratory after reporting for a length of time depending on the preservation used and the stability of the analytes being tested. Once the storage period is completed the samples are discarded unless otherwise advised by the client.

This report must not be reproduced, except in full, without the written consent of the signatory.

Ara Heron BSc (Tech) Client Services Manager - Environmental

	A B C	DE	F	G H I J K	L
1			cs for Unc	ensored Full Data Sets	
2					
3	User Selected Options				
4	Date/Time of Computation	15/05/2017 10:52:32			
5	From File	WorkSheet.xls			
6	Full Precision	OFF			
7	Confidence Coefficient	95%			
8	mber of Bootstrap Operations	2000			
9					
10	Arsenic				
11	Alsenic				
12			General	Statistics	
13	Total Nu	mber of Observations	10	Number of Distinct Observations	7
14				Number of Missing Observations	0
15		Minimum	3	Mean	5.9
16 17		Maximum	10	Median	5.5
		SD	2.025	Std. Error of Mean	0.64
18 19	C	coefficient of Variation	0.343	Skewness	0.771
20					
21			Normal C	GOF Test	
22	Shap	piro Wilk Test Statistic	0.951	Shapiro Wilk GOF Test	
23	5% Shap	iro Wilk Critical Value	0.842	Data appear Normal at 5% Significance Leve	
24	l	illiefors Test Statistic	0.18	Lilliefors GOF Test	
25	5% L	illiefors Critical Value	0.28	Data appear Normal at 5% Significance Leve	l
26		Data appear	Normal at	5% Significance Level	
27					
28			uming Nori	mal Distribution	
29		ormal UCL		95% UCLs (Adjusted for Skewness)	
30		95% Student's-t UCL	7.074	95% Adjusted-CLT UCL (Chen-1995)	7.12
31				95% Modified-t UCL (Johnson-1978)	7.1
32			Gamma	GOF Test	
33		A-D Test Statistic	0.217	Anderson-Darling Gamma GOF Test	
34		5% A-D Critical Value		etected data appear Gamma Distributed at 5% Signific	ancelev
35		K-S Test Statistic	0.153	Kolmogrov-Smirnoff Gamma GOF Test	
36		5% K-S Critical Value		etected data appear Gamma Distributed at 5% Signific	ance Lev
37 38	D	etected data appear C		stributed at 5% Significance Level	
39					
40			Gamma	Statistics	
41		k hat (MLE)	9.69	k star (bias corrected MLE)	6.85
42		Theta hat (MLE)	0.609	Theta star (bias corrected MLE)	0.861
43		nu hat (MLE)	193.8	nu star (bias corrected)	137
44	MLE	Mean (bias corrected)	5.9	MLE Sd (bias corrected)	2.254
45				Approximate Chi Square Value (0.05)	111
46	Adjusted	Level of Significance	0.0267	Adjusted Chi Square Value	106.9
47					
48			-		
49	95% Approximate Gamma UC	CL (use when n>=50))	7.285	95% Adjusted Gamma UCL (use when n<50)	7.562
50					
51			-	I GOF Test	
52	· · · · · · · · · · · · · · · · · · ·	biro Wilk Test Statistic	0.979	Shapiro Wilk Lognormal GOF Test	vol
53		iro Wilk Critical Value	0.842	Data appear Lognormal at 5% Significance Lev Lilliefors Lognormal GOF Test	
54		illiefors Critical Value	0.171	Data appear Lognormal at 5% Significance Lev	رما
55	5% L			at 5% Significance Level	
56		Sam abbear r	Sanormal		
57					

1	A B C D E	F	G H I J K	L
58		Lognorma	al Statistics	_
59	Minimum of Logged Data	1.099	Mean of logged Data	1.722
60	Maximum of Logged Data	2.303	SD of logged Data	0.344
61			· · · · · ·	
62	Assun	ning Logno	ormal Distribution	
63	95% H-UCL	7.49	90% Chebyshev (MVUE) UCL	7.846
64	95% Chebyshev (MVUE) UCL	8.726	97.5% Chebyshev (MVUE) UCL	9.947
65	99% Chebyshev (MVUE) UCL	12.35		
66				
67	•		tion Free UCL Statistics	
68	Data appear to follow a Di	scernible l	Distribution at 5% Significance Level	
69				
70			tribution Free UCLs	
71	95% CLT UCL	6.953	95% Jackknife UCL	7.074
72	95% Standard Bootstrap UCL	6.91	95% Bootstrap-t UCL	7.372
73	95% Hall's Bootstrap UCL	7.695	95% Percentile Bootstrap UCL	6.9
74	95% BCA Bootstrap UCL	7		
75	90% Chebyshev(Mean, Sd) UCL	7.821	95% Chebyshev(Mean, Sd) UCL	8.691
76	97.5% Chebyshev(Mean, Sd) UCL	9.899	99% Chebyshev(Mean, Sd) UCL	12.27
77				
78			UCL to Use	
79	95% Student's-t UCL	7.074		
80	Note: Suggestions regarding the selection of $a OE^{(1)}$		ovided to help the user to select the most appropriate 95	
01			imulation studies summarized in Singh, Singh, and Iaci (2	
82			ons results will not cover all Real World data sets.	2002)
83			hay want to consult a statistician.	
84	i of dational molyne			
85				
86 87	Cadmium			
88 89		General	Statistics	
90	Total Number of Observations	10		
91		10	Number of Distinct Observations	2
		10	Number of Distinct Observations Number of Missing Observations	2
	Minimum	10 0		
92	Minimum Maximum		Number of Missing Observations	0
		0	Number of Missing Observations Mean Median	0 0.01
92 93	Maximum	0	Number of Missing Observations Mean Median	0 0.01 0
92 93 94	Maximum SD	0 0.1 0.0316 3.162	Number of Missing Observations Mean Median Std. Error of Mean Skewness	0 0.01 0 0.01
92 93 94 95	Maximum SD Coefficient of Variation	0 0.1 0.0316 3.162 Normal C	Number of Missing Observations Mean Median Std. Error of Mean Skewness	0 0.01 0 0.01
92 93 94 95 96	Maximum SD Coefficient of Variation Shapiro Wilk Test Statistic	0 0.1 0.0316 3.162 Normal C 0.366	Number of Missing Observations Mean Median Std. Error of Mean Skewness	0 0.01 0 0.01
92 93 94 95 96 97	Maximum SD Coefficient of Variation Shapiro Wilk Test Statistic 5% Shapiro Wilk Critical Value	0 0.1 0.0316 3.162 Normal C 0.366 0.842	Number of Missing Observations Mean Median Std. Error of Mean Skewness GOF Test Data Not Normal at 5% Significance Level	0 0.01 0 0.01
92 93 94 95 96 97 98	Maximum SD Coefficient of Variation Shapiro Wilk Test Statistic 5% Shapiro Wilk Critical Value Lilliefors Test Statistic	0 0.1 0.0316 3.162 Normal C 0.366 0.842 0.524	Number of Missing Observations Mean Median Std. Error of Mean Std. Error of Mean Skewness GOF Test Data Not Normal at 5% Significance Level Lilliefors GOF Test	0 0.01 0 0.01
92 93 94 95 96 97 98 99	Maximum SD Coefficient of Variation Shapiro Wilk Test Statistic 5% Shapiro Wilk Critical Value Lilliefors Test Statistic 5% Lilliefors Critical Value	0 0.1 0.0316 3.162 Normal C 0.366 0.842 0.524 0.524	Number of Missing Observations Mean Median Std. Error of Mean Skewness GOF Test Data Not Normal at 5% Significance Level Lilliefors GOF Test Data Not Normal at 5% Significance Level Lata Not Normal at 5% Significance Level	0 0.01 0 0.01
92 93 94 95 96 97 98 99 100	Maximum SD Coefficient of Variation Shapiro Wilk Test Statistic 5% Shapiro Wilk Critical Value Lilliefors Test Statistic 5% Lilliefors Critical Value	0 0.1 0.0316 3.162 Normal C 0.366 0.842 0.524 0.524	Number of Missing Observations Mean Median Std. Error of Mean Std. Error of Mean Skewness GOF Test Data Not Normal at 5% Significance Level Lilliefors GOF Test	0 0.01 0 0.01
92 93 94 95 96 97 98 99 100 101	Maximum SD Coefficient of Variation Shapiro Wilk Test Statistic 5% Shapiro Wilk Critical Value Lilliefors Test Statistic 5% Lilliefors Critical Value Data Not N	0 0.1 0.0316 3.162 Normal C 0.366 0.842 0.524 0.524 0.28 Iormal at 5	Number of Missing Observations Mean Median Std. Error of Mean Std. Error of Mean Skewness GOF Test Data Not Normal at 5% Significance Level Lilliefors GOF Test Data Not Normal at 5% Significance Level Sw Significance Level	0 0.01 0 0.01
92 93 94 95 96 97 98 99 100 101 102	Maximum SD Coefficient of Variation Shapiro Wilk Test Statistic 5% Shapiro Wilk Critical Value Lilliefors Test Statistic 5% Lilliefors Critical Value Data Not N	0 0.1 0.0316 3.162 Normal C 0.366 0.842 0.524 0.524 0.28 Iormal at 5	Number of Missing Observations Mean Median Std. Error of Mean Skewness GOF Test Data Not Normal at 5% Significance Level Lilliefors GOF Test Data Not Normal at 5% Significance Level Stapiro Wilk GOF Test Data Not Normal at 5% Significance Level Significance Level Sw Significance Level	0 0.01 0 0.01
92 93 94 95 96 97 98 99 100 101 102 103	Maximum SD Coefficient of Variation Shapiro Wilk Test Statistic 5% Shapiro Wilk Critical Value Lilliefors Test Statistic 5% Lilliefors Critical Value Data Not N Assu 95% Normal UCL	0 0.1 0.0316 3.162 Normal C 0.366 0.842 0.524 0.28 Iormal at 5	Number of Missing Observations Mean Median Std. Error of Mean Std. Error of Mean Skewness GOF Test Data Not Normal at 5% Significance Level Lilliefors GOF Test Data Not Normal at 5% Significance Level	0 0.01 0.01 3.162
92 93 94 95 96 97 98 99 100 101 102 103 104	Maximum SD Coefficient of Variation Shapiro Wilk Test Statistic 5% Shapiro Wilk Critical Value Lilliefors Test Statistic 5% Lilliefors Critical Value Data Not N	0 0.1 0.0316 3.162 Normal C 0.366 0.842 0.524 0.524 0.28 Iormal at 5	Number of Missing Observations Mean Median Std. Error of Mean Std. Error of Mean Skewness GOF Test Data Not Normal at 5% Significance Level Lilliefors GOF Test Data Not Normal at 5% Significance Level Significance Level 5% Significance Level	0 0.01 0.01 3.162
92 93 94 95 96 97 98 99 100 101 102 103 104	Maximum SD Coefficient of Variation Shapiro Wilk Test Statistic 5% Shapiro Wilk Critical Value Lilliefors Test Statistic 5% Lilliefors Critical Value Data Not N Assu 95% Normal UCL 95% Student's-t UCL	0 0.1 0.0316 3.162 Normal C 0.366 0.842 0.524 0.28 Iormal at 5 Iming Norr	Number of Missing Observations Mean Median Std. Error of Mean Std. Error of Mean Skewness GOF Test Data Not Normal at 5% Significance Level Lilliefors GOF Test Data Not Normal at 5% Significance Level Significance Level S% Significance Level 95% UCLs (Adjusted for Skewness) 95% Adjusted-CLT UCL (Chen-1995) 95% Modified-t UCL (Johnson-1978)	0 0.01 0.01 3.162
92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108	Maximum SD Coefficient of Variation Shapiro Wilk Test Statistic 5% Shapiro Wilk Critical Value Lilliefors Test Statistic 5% Lilliefors Critical Value Data Not N Assu 95% Normal UCL 95% Student's-t UCL Gamr	0 0.1 0.0316 3.162 Normal C 0.366 0.842 0.524 0.28 Iormal at 5 uming Norr 0.0283 ma Statistic	Number of Missing Observations Mean Median Std. Error of Mean Std. Error of Mean Skewness GOF Test Data Not Normal at 5% Significance Level Lilliefors GOF Test Data Not Normal at 5% Significance Level Significance Level 5% Significance Level 5% Significance Level 95% UCLs (Adjusted for Skewness) 95% Adjusted-CLT UCL (Chen-1995) 95% Modified-t UCL (Johnson-1978) Ics Not Available	0 0.01 0.01 3.162
92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107	Maximum SD Coefficient of Variation Shapiro Wilk Test Statistic 5% Shapiro Wilk Critical Value Lilliefors Test Statistic 5% Lilliefors Critical Value Data Not N Assu 95% Normal UCL 95% Student's-t UCL Gamr	0 0.1 0.0316 3.162 Normal C 0.366 0.842 0.524 0.28 Iormal at 5 uming Norr 0.0283 ma Statistic	Number of Missing Observations Mean Median Std. Error of Mean Std. Error of Mean Skewness GOF Test Data Not Normal at 5% Significance Level Lilliefors GOF Test Data Not Normal at 5% Significance Level Significance Level S% Significance Level 95% UCLs (Adjusted for Skewness) 95% Adjusted-CLT UCL (Chen-1995) 95% Modified-t UCL (Johnson-1978)	0 0.01 0.01 3.162
92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110	Maximum SD Coefficient of Variation Shapiro Wilk Test Statistic 5% Shapiro Wilk Critical Value Lilliefors Test Statistic 5% Lilliefors Critical Value Data Not N Assu 95% Normal UCL 95% Student's-t UCL Gamr Lognor	0 0.1 0.0316 3.162 Normal C 0.366 0.842 0.524 0.28 Iormal at 5 Iming Norr 0.0283 ma Statistic mal Statist	Number of Missing Observations Mean Median Std. Error of Mean Std. Error of Mean Skewness GOF Test Data Not Normal at 5% Significance Level Lilliefors GOF Test Data Not Normal at 5% Significance Level S% Significance Level mal Distribution 95% UCLs (Adjusted for Skewness) 95% Adjusted-CLT UCL (Chen-1995) 95% Modified-t UCL (Johnson-1978) ics Not Available	0 0.01 0.01 3.162
92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 1110	Maximum SD Coefficient of Variation Shapiro Wilk Test Statistic 5% Shapiro Wilk Critical Value Lilliefors Test Statistic 5% Lilliefors Critical Value Data Not N Assu 95% Student's-t UCL Gamr Lognor	0 0.1 0.0316 3.162 Normal C 0.366 0.842 0.524 0.28 Iormal at 5 uning Norr 0.0283 ma Statistic mal Statistic	Number of Missing Observations Mean Median Std. Error of Mean Std. Error of Mean Skewness GOF Test Data Not Normal at 5% Significance Level Lilliefors GOF Test Data Not Normal at 5% Significance Level Significance Level Sw Significance Level 95% UCLs (Adjusted for Skewness) 95% Adjusted-CLT UCL (Chen-1995) 95% Modified-t UCL (Johnson-1978) cs Not Available ttion Free UCL Statistics	0 0.01 0.01 3.162
92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 111 112	Maximum SD Coefficient of Variation Shapiro Wilk Test Statistic 5% Shapiro Wilk Critical Value Lilliefors Test Statistic 5% Lilliefors Critical Value Data Not N Assu 95% Student's-t UCL Gamr Lognor	0 0.1 0.0316 3.162 Normal C 0.366 0.842 0.524 0.28 Iormal at 5 uning Norr 0.0283 ma Statistic mal Statistic	Number of Missing Observations Mean Median Std. Error of Mean Std. Error of Mean Skewness GOF Test Data Not Normal at 5% Significance Level Lilliefors GOF Test Data Not Normal at 5% Significance Level S% Significance Level mal Distribution 95% UCLs (Adjusted for Skewness) 95% Adjusted-CLT UCL (Chen-1995) 95% Modified-t UCL (Johnson-1978) ics Not Available	0 0.01 0.01 3.162
92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 1110	Maximum SD Coefficient of Variation Shapiro Wilk Test Statistic 5% Shapiro Wilk Critical Value Lilliefors Test Statistic 5% Lilliefors Critical Value Data Not N Assu 95% Normal UCL 95% Student's-t UCL Gamr Lognor Nonparametr Data do not fol	0 0.1 0.0316 3.162 Normal C 0.366 0.842 0.524 0.28 Iormal at 5 Iormal at 5 Iormal at 5 Iormal Statistic mal Statistic mal Statistic	Number of Missing Observations Mean Median Std. Error of Mean Std. Error of Mean Skewness GOF Test Data Not Normal at 5% Significance Level Lilliefors GOF Test Data Not Normal at 5% Significance Level Significance Level Sw Significance Level 95% UCLs (Adjusted for Skewness) 95% Adjusted-CLT UCL (Chen-1995) 95% Modified-t UCL (Johnson-1978) cs Not Available ttion Free UCL Statistics	0 0.01 0.01 3.162

		-		<u> </u>
445	A B C D E 95% CLT UCL	F 0.0264	G H I J K 95% Jackknife UCL	L N/A
115	95% Standard Bootstrap UCL	N/A	95% Bootstrap-t UCL	N/A
116	95% Hall's Bootstrap UCL	N/A	95% Percentile Bootstrap UCL	N/A
117	95% BCA Bootstrap UCL	N/A		
118	90% Chebyshev(Mean, Sd) UCL	0.04	95% Chebyshev(Mean, Sd) UCL	0.0536
119	97.5% Chebyshev(Mean, Sd) UCL	0.0724	99% Chebyshev(Mean, Sd) UCL	0.109
120	37.5% Chebysnev(Weah, Su) UCL	0.0724	33% Chebyshev(Weah, 30) OCL	0.103
121		uggostod	UCL to Use	
122	95% Chebyshev (Mean, Sd) UCL	0.0536		
123	35 % Chebysnev (Wearl, Su) UCL	0.0550		
124	Note: Suggestions regarding the selection of a 05% I		pvided to help the user to select the most appropriate 9	
125			mulation studies summarized in Singh, Singh, and laci	
126			ins results will not cover all Real World data sets.	(2002)
127		-		
128			ay want to consult a statistician.	
129				
130	Obroasium			
131	Chromium			
132		Ormanal	Q4_4i_4i_	
133	Tatal Number of Observations	General		
134	Total Number of Observations	10	Number of Distinct Observations	6
135	Minimum	6	Number of Missing Observations	0
136	Minimum	6	Mean	9.5
137	Maximum	19	Median	8
138	SD	3.598	Std. Error of Mean	1.138
139	Coefficient of Variation	0.379	Skewness	2.389
140		Normal	GOF Test	
141	Shapiro Wilk Test Statistic	0.695	Shapiro Wilk GOF Test	
142	5% Shapiro Wilk Critical Value	0.842	Data Not Normal at 5% Significance Level	
143	Lilliefors Test Statistic	0.842	Lilliefors GOF Test	
144		0.202		
145			Data appear Normal at 5% Significance Leve rmal at 5% Significance Level	;1
146				
147	المعالم	iming Norr	nal Distribution	
148	95% Normal UCL		95% UCLs (Adjusted for Skewness)	
149	95% Student's-t UCL	11.59	95% Adjusted-CLT UCL (Chen-1995)	12.29
150		11.00	95% Modified-t UCL (Johnson-1978)	11.73
151				11.70
152		Gamma (GOF Test	
153	A-D Test Statistic	1.047	Anderson-Darling Gamma GOF Test	
154	5% A-D Critical Value	0.725	Data Not Gamma Distributed at 5% Significance	level
155	K-S Test Statistic	0.269	Kolmogrov-Smirnoff Gamma GOF Test	
156	5% K-S Critical Value	0.267	Data Not Gamma Distributed at 5% Significance	Level
157			ed at 5% Significance Level	
158			•	
159 160		Gamma	Statistics	
	k hat (MLE)	10.54	k star (bias corrected MLE)	7.446
161 162	Theta hat (MLE)	0.901	Theta star (bias corrected MLE)	1.276
162	nu hat (MLE)	210.8	nu star (bias corrected)	148.9
164	MLE Mean (bias corrected)	9.5	MLE Sd (bias corrected)	3.482
165	· · · · · · · · · · · · · · · · · · ·		Approximate Chi Square Value (0.05)	121.7
165	Adjusted Level of Significance	0.0267	Adjusted Chi Square Value	117.4
167			· ·	
167	Assu	ming Gam	ma Distribution	
169	95% Approximate Gamma UCL (use when n>=50))	11.62	95% Adjusted Gamma UCL (use when n<50)	12.05
170				
171	I	Lognormal	GOF Test	

	A B C D E	F	G H I J K	L
172	Shapiro Wilk Test Statistic	0.814	Shapiro Wilk Lognormal GOF Test	
173	5% Shapiro Wilk Critical Value	0.842	Data Not Lognormal at 5% Significance Level	
174	Lilliefors Test Statistic	0.257	Lilliefors Lognormal GOF Test	
175		0.28	Data appear Lognormal at 5% Significance Leve	əl
176	Data appear Approxi	mate Logn	ormal at 5% Significance Level	
177				
178		-	I Statistics	
179	Minimum of Logged Data	1.792	Mean of logged Data	2.203
180	Maximum of Logged Data	2.944	SD of logged Data	0.306
181			rmal Distribution	
182		11.62	90% Chebyshev (MVUE) UCL	12.2
183	95% Chobyshov (M)/UE) UC	13.45	97.5% Chebyshev (MVUE) UCL	15.19
184	00% Chabyabay (MV/UE) UC	18.6		10.15
185		10.0		
186	Nonnaramatr	ic Distribut	tion Free UCL Statistics	
187	Data appear to follow a Di		Distribution at 5% Significance Level	
188 189			v	
190	Nonpara	metric Dist	ribution Free UCLs	
191	95% CLT UCL	11.37	95% Jackknife UCL	11.59
192	95% Standard Bootstrap UCL	11.29	95% Bootstrap-t UCL	14.59
193	95% Hall's Bootstrap UCL	20.02	95% Percentile Bootstrap UCL	11.5
194	95% BCA Bootstrap UCL	12		
195	90% Chebyshev(Mean, Sd) UCL	12.91	95% Chebyshev(Mean, Sd) UCL	14.46
196	97.5% Chebyshev(Mean, Sd) UCL	16.61	99% Chebyshev(Mean, Sd) UCL	20.82
197				
198			UCL to Use	
199	95% Student's-t UCL	11.59		
200				
201	T	•	povided to help the user to select the most appropriate 95	
202			mulation studies summarized in Singh, Singh, and Iaci (ns results will not cover all Real World data sets.	2002)
203	. ,	-	ay want to consult a statistician.	
204	-			
205				
206	Copper			
207 208				
208		General	Statistics	
209	Tatal Number of Observations	10	Number of Distinct Observations	
				8
1211			Number of Missing Observations	8 0
211 212	Minimum	7		
212	Maximum	7 17	Number of Missing Observations	0
212 213	Maximum		Number of Missing Observations Mean	0 11.2
212	Maximum SD	17	Number of Missing Observations Mean Median	0 11.2 10
212 213 214	Maximum SD Coefficient of Variation	17 3.36 0.3	Number of Missing Observations Mean Median Std. Error of Mean Skewness	0 11.2 10 1.062
212 213 214 215	Maximum SD Coefficient of Variation	17 3.36 0.3 Normal C	Number of Missing Observations Mean Median Std. Error of Mean Skewness	0 11.2 10 1.062
212 213 214 215 216	Maximum SD Coefficient of Variation Shapiro Wilk Test Statistic	17 3.36 0.3 Normal C 0.9	Number of Missing Observations Mean Median Std. Error of Mean Skewness	0 11.2 10 1.062
212 213 214 215 216 217	Maximum SD Coefficient of Variation Shapiro Wilk Test Statistic 5% Shapiro Wilk Critical Value	17 3.36 0.3 Normal C 0.9 0.842	Number of Missing Observations Mean Median Std. Error of Mean Skewness	0 11.2 10 1.062
212 213 214 215 216 217 218	Maximum SD Coefficient of Variation Shapiro Wilk Test Statistic 5% Shapiro Wilk Critical Value Lilliefors Test Statistic	17 3.36 0.3 Normal C 0.9 0.842 0.24	Number of Missing Observations Mean Median Std. Error of Mean Std. Error of Mean Skewness GOF Test Data appear Normal at 5% Significance Level Lilliefors GOF Test	0 11.2 10 1.062
212 213 214 215 216 217 218 219	Maximum SD Coefficient of Variation Shapiro Wilk Test Statistic 5% Shapiro Wilk Critical Value Lilliefors Test Statistic 5% Lilliefors Critical Value	17 3.36 0.3 Normal C 0.9 0.842 0.24 0.28	Number of Missing Observations Mean Median Std. Error of Mean Std. Error of Mean Skewness GOF Test Data appear Normal at 5% Significance Level Lilliefors GOF Test Data appear Normal at 5% Significance Level	0 11.2 10 1.062
212 213 214 215 216 217 218 219 220	Maximum SD Coefficient of Variation Shapiro Wilk Test Statistic 5% Shapiro Wilk Critical Value Lilliefors Test Statistic 5% Lilliefors Critical Value	17 3.36 0.3 Normal C 0.9 0.842 0.24 0.28	Number of Missing Observations Mean Median Std. Error of Mean Std. Error of Mean Skewness GOF Test Data appear Normal at 5% Significance Level Lilliefors GOF Test	0 11.2 10 1.062
212 213 214 215 216 217 218 219 220 221 222 223	Maximum SD Coefficient of Variation Shapiro Wilk Test Statistic 5% Shapiro Wilk Critical Value Lilliefors Test Statistic 5% Lilliefors Critical Value Data appear	17 3.36 0.3 Normal C 0.9 0.842 0.24 0.28 Normal at	Number of Missing Observations Mean Median Std. Error of Mean Std. Error of Mean Skewness GOF Test Data appear Normal at 5% Significance Level Lilliefors GOF Test Data appear Normal at 5% Significance Level 5% Significance Level	0 11.2 10 1.062
212 213 214 215 216 217 218 219 220 221 222 223 224	Maximum SD Coefficient of Variation Shapiro Wilk Test Statistic 5% Shapiro Wilk Critical Value Lilliefors Test Statistic 5% Lilliefors Critical Value Data appear	17 3.36 0.3 Normal C 0.9 0.842 0.24 0.28 Normal at	Number of Missing Observations Mean Median Std. Error of Mean Std. Error of Mean Skewness GOF Test Data appear Normal at 5% Significance Level Lilliefors GOF Test Data appear Normal at 5% Significance Level 5% Significance Level	0 11.2 10 1.062
212 213 214 215 216 217 218 219 220 221 222 223 224 225	Maximum SD Coefficient of Variation Shapiro Wilk Test Statistic 5% Shapiro Wilk Critical Value Lilliefors Test Statistic 5% Lilliefors Critical Value Data appear Assu 95% Normal UCL	17 3.36 0.3 Normal C 0.9 0.842 0.24 0.28 Normal at	Number of Missing Observations Mean Median Std. Error of Mean Std. Error of Mean Skewness GOF Test Data appear Normal at 5% Significance Level Lilliefors GOF Test Data appear Normal at 5% Significance Level 5% Significance Level 95% UCLs (Adjusted for Skewness)	0 11.2 10 1.062 0.751
212 213 214 215 216 217 218 220 221 220 221 222 223 224 225 226	Maximum SD Coefficient of Variation Shapiro Wilk Test Statistic 5% Shapiro Wilk Critical Value Lilliefors Test Statistic 5% Lilliefors Critical Value Data appear Assu 95% Normal UCL	17 3.36 0.3 Normal C 0.9 0.842 0.24 0.28 Normal at	Number of Missing Observations Mean Median Std. Error of Mean Std. Error of Mean Skewness GOF Test Data appear Normal at 5% Significance Level Lilliefors GOF Test Data appear Normal at 5% Significance Level 5% Significance Level 95% UCLs (Adjusted for Skewness) 95% Adjusted-CLT UCL (Chen-1995)	0 11.2 10 1.062 0.751
212 213 214 215 216 217 218 219 220 221 222 223 222 223 224 225	Maximum SD Coefficient of Variation Shapiro Wilk Test Statistic 5% Shapiro Wilk Critical Value Lilliefors Test Statistic 5% Lilliefors Critical Value Data appear Assu 95% Normal UCL	17 3.36 0.3 Normal C 0.9 0.842 0.24 0.28 Normal at	Number of Missing Observations Mean Median Std. Error of Mean Std. Error of Mean Skewness GOF Test Data appear Normal at 5% Significance Level Lilliefors GOF Test Data appear Normal at 5% Significance Level 5% Significance Level 95% UCLs (Adjusted for Skewness)	0 11.2 10 1.062 0.751

	A B C D E	F	G H I J K	1
229		-	GOF Test	-
230	A-D Test Statistic	0.414	Anderson-Darling Gamma GOF Test	
231	5% A-D Critical Value	0.725	etected data appear Gamma Distributed at 5% Signific	ance Lev
232	K-S Test Statistic	0.222	Kolmogrov-Smirnoff Gamma GOF Test	
233	5% K-S Critical Value	0.266	etected data appear Gamma Distributed at 5% Signific	ance Lev
234	Detected data appear G	amma Di	stributed at 5% Significance Level	
235				
236		Gamma	Statistics	
237	k hat (MLE)	13.12	k star (bias corrected MLE)	9.248
238	Theta hat (MLE)	0.854	Theta star (bias corrected MLE)	1.211
239	nu hat (MLE)	262.3	nu star (bias corrected)	185
240	MLE Mean (bias corrected)	11.2	MLE Sd (bias corrected)	3.683
241			Approximate Chi Square Value (0.05)	154.5
242	Adjusted Level of Significance	0.0267	Adjusted Chi Square Value	149.7
243				
244	Assu	ming Garr	ma Distribution	
245	95% Approximate Gamma UCL (use when n>=50))	13.41	95% Adjusted Gamma UCL (use when n<50)	13.84
246				
247	I	_ognorma	I GOF Test	
248	Shapiro Wilk Test Statistic	0.94	Shapiro Wilk Lognormal GOF Test	
249	5% Shapiro Wilk Critical Value	0.842	Data appear Lognormal at 5% Significance Lev	vel
250	Lilliefors Test Statistic	0.202	Lilliefors Lognormal GOF Test	
251	5% Lilliefors Critical Value	0.28	Data appear Lognormal at 5% Significance Lev	vel
252	Data appear L	ognormal	at 5% Significance Level	
253				
254		Lognorma	I Statistics	
255	Minimum of Logged Data	1.946	Mean of logged Data	2.377
256	Maximum of Logged Data	2.833	SD of logged Data	0.29
257				
258			ormal Distribution	
259	95% H-UCL	13.59	90% Chebyshev (MVUE) UCL	14.29
260	95% Chebyshev (MVUE) UCL	15.69	97.5% Chebyshev (MVUE) UCL	17.64
261	99% Chebyshev (MVUE) UCL	21.47		
262				
263	•			
264	Data appear to follow a Di	scernible	Distribution at 5% Significance Level	
265	Namara	matria Dia	wikution Free U.O.	
266	-		tribution Free UCLs	10.15
267	95% CLT UCL	12.95	95% Jackknife UCL	13.15
268	95% Standard Bootstrap UCL	12.81	95% Bootstrap-t UCL	13.64
269	95% Hall's Bootstrap UCL	13.36	95% Percentile Bootstrap UCL	13
270	95% BCA Bootstrap UCL 90% Chebyshev(Mean, Sd) UCL	13 14.39	95% Chebyshev(Mean, Sd) UCL	15.83
271	90% Chebyshev(Mean, Sd) UCL 97.5% Chebyshev(Mean, Sd) UCL	14.39	95% Chebyshev(Mean, Sd) UCL 99% Chebyshev(Mean, Sd) UCL	21.77
272		17.04	53% Chebyshev(Mean, Su) UCL	21.//
273	<u> </u>	Invoeted	UCL to Use	
274	95% Student's-t UCL	13.15		
275		10.10		
276	Note: Suggestions regarding the selection of a 95% I	JCL are pr	ovided to help the user to select the most appropriate 9	5% UCI
277			mulation studies summarized in Singh, Singh, and Iaci	
278			ons results will not cover all Real World data sets.	,/
279			hay want to consult a statistician.	
280				
281				
282 283	Lead			
203				
284		General	Statistics	
285				

	A B C D E	F	G H I J K	
286	Total Number of Observations	10	Number of Distinct Observations	10
287			Number of Missing Observations	0
288	Minimum	7.3	Mean	14.35
289	Maximum	17.9	Median	15.1
290	SD	3.037	Std. Error of Mean	0.96
291	Coefficient of Variation	0.212	Skewness	-1.367
292				
293		Normal C	GOF Test	
294	Shapiro Wilk Test Statistic	0.888	Shapiro Wilk GOF Test	
295	5% Shapiro Wilk Critical Value	0.842	Data appear Normal at 5% Significance Leve	el
296	Lilliefors Test Statistic	0.16	Lilliefors GOF Test	
297	5% Lilliefors Critical Value	0.28	Data appear Normal at 5% Significance Leve	əl
298	Data appear	Normal at	t 5% Significance Level	
299				
300	Assu	iming Nori	mal Distribution	
301	95% Normal UCL		95% UCLs (Adjusted for Skewness)	
302	95% Student's-t UCL	16.11	95% Adjusted-CLT UCL (Chen-1995)	15.49
303			95% Modified-t UCL (Johnson-1978)	16.04
304			·	
305		Gamma	GOF Test	
306	A-D Test Statistic	0.679	Anderson-Darling Gamma GOF Test	
307	5% A-D Critical Value	0.725	etected data appear Gamma Distributed at 5% Signifi	cance Lev
308	K-S Test Statistic	0.19	Kolmogrov-Smirnoff Gamma GOF Test	
309	5% K-S Critical Value		etected data appear Gamma Distributed at 5% Signifi	cance Lev
310	Detected data appear G	amma Di	stributed at 5% Significance Level	
311				
312		Gamma	Statistics	
313	k hat (MLE)	19.51	k star (bias corrected MLE)	13.72
314	Theta hat (MLE)	0.735	Theta star (bias corrected MLE)	1.046
315	nu hat (MLE)	390.2	nu star (bias corrected)	274.5
316	MLE Mean (bias corrected)	14.35	MLE Sd (bias corrected)	3.874
317			Approximate Chi Square Value (0.05)	237.1
318	Adjusted Level of Significance	0.0267	Adjusted Chi Square Value	231.1
319				
320		-		17.05
321	95% Approximate Gamma UCL (use when n>=50))	16.61	95% Adjusted Gamma UCL (use when n<50)	17.05
322				
323	Shapiro Wilk Test Statistic	0.792	I GOF Test	
324	5% Shapiro Wilk Critical Value	0.792	Shapiro Wilk Lognormal GOF Test Data Not Lognormal at 5% Significance Leve	
325	Lilliefors Test Statistic	0.842	Lilliefors Lognormal GOF Test	1
326	5% Lilliefors Critical Value	0.22	Data appear Lognormal at 5% Significance Le	vol
327			normal at 5% Significance Level	*51
328		mate Logi		
329		Lognorma	I Statistics	
330	Minimum of Logged Data	1.988	Mean of logged Data	2.638
331	Maximum of Logged Data	2.885	SD of logged Data	0.256
332				
333	Assum	ning Loand	ormal Distribution	
334 335	95% H-UCL	17.05	90% Chebyshev (MVUE) UCL	17.92
336	95% Chebyshev (MVUE) UCL	19.52	97.5% Chebyshev (MVUE) UCL	21.73
337	99% Chebyshev (MVUE) UCL	26.08		
338			I	
339	Nonparametr	ic Distribu	tion Free UCL Statistics	
340			Distribution at 5% Significance Level	
340 341			-	
	Nonpara	metric Dis	tribution Free UCLs	
342	•			

95% Student's-t UCL uggestions regarding the selection of a 95% L e recommendations are based upon the resul and Singh and Singh (2003). However For additional insight For highly negatively-skewed data, confide	16.11 JCL are pr ts of the si r, simulatic the user m nce limits nods provi	G H I J K 95% Jackknife UCL 95% Bootstrap-t UCL 95% Bootstrap-t UCL 95% Percentile Bootstrap UCL 95% Chebyshev(Mean, Sd) UCL 95% Chebyshev(Mean, Sd) UCL 99% Chebyshev(Mean, Sd) UCL 99% Chebyshev(Mean, Sd) UCL 99% Chebyshev(Mean, Sd) UCL UCL to Use 90% Chebyshev(Mean, Sd) UCL imulation studies summarized in Singh, Singh, and Iaci (ons results will not cover all Real World data sets. nay want to consult a statistician. (e.g., Chen, Johnson, Lognormal, and Gamma) may r de adjustments for positvely skewed data sets. Statistics Number of Distinct Observations	(2002)
95% Standard Bootstrap UCL 95% Hall's Bootstrap UCL 95% BCA Bootstrap UCL 90% Chebyshev(Mean, Sd) UCL 97.5% Chebyshev(Mean, Sd) UCL 97.5% Chebyshev(Mean, Sd) UCL 95% Student's-t UCL uggestions regarding the selection of a 95% U e recommendations are based upon the resul and Singh and Singh (2003). However For additional insight For highly negatively-skewed data, confide reliable. Chen's and Johnson's meth Total Number of Observations Minimum	15.84 15.66 15.52 17.23 20.35 3uggested 16.11 JCL are pr ts of the si r, simulatic the user m nce limits nods provi	95% Bootstrap-t UCL 95% Percentile Bootstrap UCL 95% Chebyshev(Mean, Sd) UCL 99% Chebyshev(Mean, Sd) UCL 99% Chebyshev(Mean, Sd) UCL UCL to Use ovided to help the user to select the most appropriate 98 imulation studies summarized in Singh, Singh, and Iaci (ons results will not cover all Real World data sets. hay want to consult a statistician. (e.g., Chen, Johnson, Lognormal, and Gamma) may r de adjustments for positvely skewed data sets.	15.67 15.76 18.54 23.9 5% UCL. (2002)
95% Hall's Bootstrap UCL 95% BCA Bootstrap UCL 90% Chebyshev(Mean, Sd) UCL 97.5% Chebyshev(Mean, Sd) UCL 97.5% Chebyshev(Mean, Sd) UCL 97.5% Student's-t UCL uggestions regarding the selection of a 95% L e recommendations are based upon the resul and Singh and Singh (2003). However For additional insight For highly negatively-skewed data, confide reliable. Chen's and Johnson's mett Total Number of Observations Minimum	15.66 15.52 17.23 20.35 Juggested 16.11 JCL are pr ts of the si r, simulatic the user m nce limits nods provi	95% Percentile Bootstrap UCL 95% Chebyshev(Mean, Sd) UCL 99% Chebyshev(Mean, Sd) UCL UCL to Use UCL to Use ovided to help the user to select the most appropriate 95 imulation studies summarized in Singh, Singh, and laci (ons results will not cover all Real World data sets. nay want to consult a statistician. (e.g., Chen, Johnson, Lognormal, and Gamma) may r de adjustments for positvely skewed data sets.	15.76 18.54 23.9 5% UCL. (2002)
95% BCA Bootstrap UCL 90% Chebyshev(Mean, Sd) UCL 97.5% Chebyshev(Mean, Sd) UCL 97.5% Chebyshev(Mean, Sd) UCL 95% Student's-t UCL uggestions regarding the selection of a 95% U recommendations are based upon the resul and Singh and Singh (2003). However For additional insight For highly negatively-skewed data, confide reliable. Chen's and Johnson's mett Total Number of Observations Minimum	15.52 17.23 20.35 Juggested 16.11 JCL are pr ts of the si r, simulatic the user m nce limits nods provi	95% Chebyshev(Mean, Sd) UCL 99% Chebyshev(Mean, Sd) UCL UCL to Use ovided to help the user to select the most appropriate 95 imulation studies summarized in Singh, Singh, and Iaci (ons results will not cover all Real World data sets. hay want to consult a statistician. (e.g., Chen, Johnson, Lognormal, and Gamma) may r de adjustments for positvely skewed data sets.	18.54 23.9 5% UCL. (2002)
90% Chebyshev(Mean, Sd) UCL 97.5% Chebyshev(Mean, Sd) UCL 97.5% Chebyshev(Mean, Sd) UCL 95% Student's-t UCL gestions regarding the selection of a 95% L e recommendations are based upon the resul and Singh and Singh (2003). However For additional insight For highly negatively-skewed data, confide reliable. Chen's and Johnson's meth Total Number of Observations Minimum	17.23 20.35 Suggested 16.11 JCL are pr ts of the si r, simulatic the user m nce limits nods provi	99% Chebyshev(Mean, Sd) UCL UCL to Use ovided to help the user to select the most appropriate 95 imulation studies summarized in Singh, Singh, and laci (ons results will not cover all Real World data sets. nay want to consult a statistician. (e.g., Chen, Johnson, Lognormal, and Gamma) may r de adjustments for positvely skewed data sets.	23.9 5% UCL. (2002)
97.5% Chebyshev(Mean, Sd) UCL 97.5% Chebyshev(Mean, Sd) UCL 95% Student's-t UCL 95% Student's-t UCL 95% Student's-t UCL 100 100 100 100 100 100 100 10	20.35 Juggested 16.11 JCL are pr ts of the si r, simulatic the user m nce limits nods provi General 10	99% Chebyshev(Mean, Sd) UCL UCL to Use ovided to help the user to select the most appropriate 95 imulation studies summarized in Singh, Singh, and laci (ons results will not cover all Real World data sets. nay want to consult a statistician. (e.g., Chen, Johnson, Lognormal, and Gamma) may r de adjustments for positvely skewed data sets.	23.9 5% UCL. (2002)
S 95% Student's-t UCL aggestions regarding the selection of a 95% L e recommendations are based upon the resul and Singh and Singh (2003). However For additional insight For highly negatively-skewed data, confide reliable. Chen's and Johnson's meth Total Number of Observations Minimum	JCL are pr ts of the si r, simulatic the user m nce limits nods provi	UCL to Use UCL to Use Ovided to help the user to select the most appropriate 95 imulation studies summarized in Singh, Singh, and Iaci (ons results will not cover all Real World data sets. hay want to consult a statistician. (e.g., Chen, Johnson, Lognormal, and Gamma) may r ide adjustments for positvely skewed data sets. Statistics	5% UCL (2002)
95% Student's-t UCL uggestions regarding the selection of a 95% L e recommendations are based upon the resul and Singh and Singh (2003). However For additional insight For highly negatively-skewed data, confide reliable. Chen's and Johnson's mett Total Number of Observations Minimum	16.11 JCL are pr ts of the si r, simulatic the user m nce limits nods provi	ovided to help the user to select the most appropriate 98 imulation studies summarized in Singh, Singh, and laci (ons results will not cover all Real World data sets. hay want to consult a statistician. (e.g., Chen, Johnson, Lognormal, and Gamma) may r de adjustments for positvely skewed data sets. Statistics	(2002)
95% Student's-t UCL uggestions regarding the selection of a 95% L e recommendations are based upon the resul and Singh and Singh (2003). However For additional insight For highly negatively-skewed data, confide reliable. Chen's and Johnson's mett Total Number of Observations Minimum	16.11 JCL are pr ts of the si r, simulatic the user m nce limits nods provi	ovided to help the user to select the most appropriate 98 imulation studies summarized in Singh, Singh, and laci (ons results will not cover all Real World data sets. hay want to consult a statistician. (e.g., Chen, Johnson, Lognormal, and Gamma) may r de adjustments for positvely skewed data sets. Statistics	(2002)
Iggestions regarding the selection of a 95% L e recommendations are based upon the resul and Singh and Singh (2003). However For additional insight For highly negatively-skewed data, confide reliable. Chen's and Johnson's meth Total Number of Observations Minimum	JCL are pr ts of the si r, simulatic the user m nce limits nods provi	imulation studies summarized in Singh, Singh, and Iaci (ons results will not cover all Real World data sets. hay want to consult a statistician. (e.g., Chen, Johnson, Lognormal, and Gamma) may r de adjustments for positvely skewed data sets.	(2002)
e recommendations are based upon the resul and Singh and Singh (2003). However For additional insight For highly negatively-skewed data, confide reliable. Chen's and Johnson's meth Total Number of Observations Minimum	ts of the si r, simulatic the user m nce limits nods provi General 10	imulation studies summarized in Singh, Singh, and Iaci (ons results will not cover all Real World data sets. hay want to consult a statistician. (e.g., Chen, Johnson, Lognormal, and Gamma) may r de adjustments for positvely skewed data sets.	(2002)
e recommendations are based upon the resul and Singh and Singh (2003). However For additional insight For highly negatively-skewed data, confide reliable. Chen's and Johnson's meth Total Number of Observations Minimum	ts of the si r, simulatic the user m nce limits nods provi General 10	imulation studies summarized in Singh, Singh, and Iaci (ons results will not cover all Real World data sets. hay want to consult a statistician. (e.g., Chen, Johnson, Lognormal, and Gamma) may r de adjustments for positvely skewed data sets.	(2002)
and Singh and Singh (2003). However For additional insight For highly negatively-skewed data, confide reliable. Chen's and Johnson's meth Total Number of Observations Minimum	r, simulatic the user m nce limits nods provi General 10	ons results will not cover all Real World data sets. hay want to consult a statistician. (e.g., Chen, Johnson, Lognormal, and Gamma) may r ide adjustments for positvely skewed data sets.	not be
For additional insight For highly negatively-skewed data, confide reliable. Chen's and Johnson's meth Total Number of Observations Minimum	the user m nce limits nods provi General 10	nay want to consult a statistician. (e.g., Chen, Johnson, Lognormal, and Gamma) may r de adjustments for positvely skewed data sets. Statistics	
For highly negatively-skewed data, confide reliable. Chen's and Johnson's meth Total Number of Observations Minimum	nce limits nods provi General 10	(e.g., Chen, Johnson, Lognormal, and Gamma) may r de adjustments for positvely skewed data sets.	
reliable. Chen's and Johnson's meth Total Number of Observations Minimum	General	de adjustments for positvely skewed data sets.	
reliable. Chen's and Johnson's meth Total Number of Observations Minimum	General	de adjustments for positvely skewed data sets.	
Total Number of Observations Minimum	General 10	Statistics	
Minimum	10		
Minimum	10		
Minimum	10		5
Minimum	10		
Minimum	10		5
Minimum		Number of Distinct Observations	5
	4		3
	4	Number of Missing Observations	0
Maximum	-	Mean	5.5
	9	Median	5
SD	1.581	Std. Error of Mean	0.5
Coefficient of Variation	0.287	Skewness	1.265
		· · · · ·	
	Normal (GOF Test	
Shapiro Wilk Test Statistic	0.863	-	
5% Shapiro Wilk Critical Value	0.842	Data appear Normal at 5% Significance Level	
Lilliefors Test Statistic	0.224	Lilliefors GOF Test	
	0.28	Data appear Normal at 5% Significance Level	
Data appear	Normal a	t 5% Significance Level	
Assu	iming Nor	mal Distribution	
95% Normal UCL		95% UCLs (Adjusted for Skewness)	
95% Student's-t UCL	6.417	95% Adjusted-CLT UCL (Chen-1995)	6.536
		95% Modified-t UCL (Johnson-1978)	6.45
		· · · · ·	
	Gamma	GOF Test	
A-D Test Statistic	0.461	Anderson-Darling Gamma GOF Test	
5% A-D Critical Value	0.725	etected data appear Gamma Distributed at 5% Signification	ance Lev
K-S Test Statistic	0.21	Kolmogrov-Smirnoff Gamma GOF Test	
5% K-S Critical Value	0.266	etected data appear Gamma Distributed at 5% Signification	ance Lev
Detected data appear O	Gamma Di	stributed at 5% Significance Level	
	Gamma	Statistics	
k hat (MLE)	15.15	k star (bias corrected MLE)	10.67
Theta hat (MLE)	0.363	Theta star (bias corrected MLE)	0.515
nu hat (MLE)	303	nu star (bias corrected)	213.5
MLE Mean (bias corrected)	5.5	MLE Sd (bias corrected)	1.684
		Approximate Chi Square Value (0.05)	180.6
	0.0267		175.4
Adjusted Level of Significance		· · ·	
Adjusted Level of Significance			
	5% Shapiro Wilk Critical Value Lilliefors Test Statistic 5% Lilliefors Critical Value Data appear Assu 95% Normal UCL 95% Student's-t UCL 95% Student's-t UCL A-D Test Statistic 5% A-D Critical Value K-S Test Statistic 5% K-S Critical Value Detected data appear C k hat (MLE) Theta hat (MLE) nu hat (MLE)	Shapiro Wilk Test Statistic 0.863 5% Shapiro Wilk Critical Value 0.842 Lilliefors Test Statistic 0.224 5% Lilliefors Critical Value 0.28 Data appear Normal at Assuming Norm 95% Normal UCL 95% Student's-t UCL 6.417 95% Student's-t UCL 6.417 6.417 6.417 6.417 6.417 0.25 Camma 6 Camma 6 Camma 7 C	5% Shapiro Wilk Critical Value 0.842 Data appear Normal at 5% Significance Level Lilliefors Test Statistic 0.224 Lilliefors GOF Test 5% Lilliefors Critical Value 0.28 Data appear Normal at 5% Significance Level Data appear Normal at 5% Significance Level Data appear Normal at 5% Significance Level Assuming Normal Distribution 95% Normal UCL 95% UCLs (Adjusted for Skewness) 95% Normal UCL 95% Adjusted-CLT UCL (Chen-1995) 95% Modified-t UCL (Johnson-1978) 95% Student's-t UCL 6.417 95% Modified-t UCL (Johnson-1978) Gamma GOF Test A-D Test Statistic 0.461 Anderson-Darling Gamma GOF Test 5% A-D Critical Value 0.725 etected data appear Gamma Distributed at 5% Signific 5% K-S Critical Value 0.266 etected data appear Gamma Distributed at 5% Signific Detected data appear Gamma Distributed at 5% Signific Camma Statistics K hat (MLE) Significance Level Liliefors Corrected MLE) Theta hat (MLE) Normal Corrected MLE) Normal

		F	G H I J K	
400	95% Approximate Gamma UCL (use when n>=50))	6.499	95% Adjusted Gamma UCL (use when n<50)	6.693
401				
402	l	Lognormal	GOF Test	
403	Shapiro Wilk Test Statistic	0.905	Shapiro Wilk Lognormal GOF Test	
404	5% Shapiro Wilk Critical Value	0.842	Data appear Lognormal at 5% Significance Lev	el
405	Lilliefors Test Statistic	0.192	Lilliefors Lognormal GOF Test	
406	5% Lilliefors Critical Value	0.28	Data appear Lognormal at 5% Significance Lev	el
407	Data appear L	ognormal	at 5% Significance Level	
408				
409		Lognorma	I Statistics	
410	Minimum of Logged Data	1.386	Mean of logged Data	1.671
411	Maximum of Logged Data	2.197	SD of logged Data	0.266
412				
413			ormal Distribution	
414	95% H-UCL	6.546	90% Chebyshev (MVUE) UCL	6.884
415	95% Chebyshev (MVUE) UCL	7.514	97.5% Chebyshev (MVUE) UCL	8.39
416	99% Chebyshev (MVUE) UCL	10.11		
417				
418	•		tion Free UCL Statistics	
419	Data appear to follow a Di	scernible [Distribution at 5% Significance Level	
420				
421	•		tribution Free UCLs	
422	95% CLT UCL	6.322	95% Jackknife UCL	6.417
423	95% Standard Bootstrap UCL	6.289	95% Bootstrap-t UCL	6.903
424	95% Hall's Bootstrap UCL	7.72	95% Percentile Bootstrap UCL	6.3
425	95% BCA Bootstrap UCL	6.4		7 070
426	90% Chebyshev(Mean, Sd) UCL	7	95% Chebyshev(Mean, Sd) UCL	7.679
427	97.5% Chebyshev(Mean, Sd) UCL	8.622	99% Chebyshev(Mean, Sd) UCL	10.47
428				
429			UCL to Use	
430	95% Student's-t UCL	6.417		
431	Note: Suggestions regarding the selection of a 95% I		ovided to help the user to select the most appropriate 95	5% LICI
432			mulation studies summarized in Singh, Singh, and Iaci (
433	•		ns results will not cover all Real World data sets.	(2002)
434			ay want to consult a statistician.	
435			-,	
436 437				
	Zinc			
430				
439 440		General	Statistics	
	Total Number of Observations	10	Number of Distinct Observations	10
441 442			Number of Missing Observations	0
442	Minimum	47	Mean	76.1
443 444	Maximum	195	Median	65.5
444 445	SD	42.79	Std. Error of Mean	13.53
445	Coefficient of Variation	0.562	Skewness	2.888
440			1	
448		Normal C	GOF Test	
449	Shapiro Wilk Test Statistic	0.577	Shapiro Wilk GOF Test	
450	5% Shapiro Wilk Critical Value	0.842	Data Not Normal at 5% Significance Level	
451	Lilliefors Test Statistic	0.373	Lilliefors GOF Test	
452	5% Lilliefors Critical Value	0.28	Data Not Normal at 5% Significance Level	
453	Data Not N	lormal at 5	% Significance Level	
454				
455	Assu	iming Norr	nal Distribution	
			95% UCLs (Adjusted for Skewness)	
456	95% Normal UCL		95% UCLS (Adjusted for Skewness)	

	A B C D E	F	GHIJK	1
457	95% Student's-t UCL	100.9	95% Adjusted-CLT UCL (Chen-1995)	111.6
458			95% Modified-t UCL (Johnson-1978)	103
459				
460		Gamma	GOF Test	
461	A-D Test Statistic	1.352	Anderson-Darling Gamma GOF Test	
462	5% A-D Critical Value	0.729	Data Not Gamma Distributed at 5% Significance L	.evel
463	K-S Test Statistic	0.324	Kolmogrov-Smirnoff Gamma GOF Test	
464	5% K-S Critical Value	0.267	Data Not Gamma Distributed at 5% Significance L	.evel
465	Data Not Gamma	a Distribute	ed at 5% Significance Level	
466				
467		Gamma		
468	k hat (MLE)	5.869	k star (bias corrected MLE)	4.175
469	Theta hat (MLE)	12.97	Theta star (bias corrected MLE)	18.23
470	nu hat (MLE)	117.4	nu star (bias corrected)	83.49
471	MLE Mean (bias corrected)	76.1	MLE Sd (bias corrected)	37.25
472			Approximate Chi Square Value (0.05)	63.44
473	Adjusted Level of Significance	0.0267	Adjusted Chi Square Value	60.4
474	A			
475			ma Distribution	105.0
476	95% Approximate Gamma UCL (use when n>=50))	100.2	95% Adjusted Gamma UCL (use when n<50)	105.2
477		ognormol	GOF Test	
478	Shapiro Wilk Test Statistic	0.741	Shapiro Wilk Lognormal GOF Test	
479	5% Shapiro Wilk Critical Value	0.741	Data Not Lognormal at 5% Significance Level	
480	Lilliefors Test Statistic	0.842	Lilliefors Lognormal GOF Test	
481	5% Lilliefors Critical Value	0.230	Data Not Lognormal at 5% Significance Level	
482			5% Significance Level	
483				
484		Loanorma	I Statistics	
485	Minimum of Logged Data	3.85	Mean of logged Data	4.244
486	Maximum of Logged Data	5.273	SD of logged Data	0.392
487 488				
489	Assum	ning Logno	rmal Distribution	
490	95% H-UCL	98.77	90% Chebyshev (MVUE) UCL	102.8
491	95% Chebyshev (MVUE) UCL	115.5	97.5% Chebyshev (MVUE) UCL	133.1
492	99% Chebyshev (MVUE) UCL	167.8		
493				
494	Nonparametri	ic Distribu	tion Free UCL Statistics	
495	Data do not foll	low a Disc	ernible Distribution (0.05)	
496				
497			tribution Free UCLs	
498	95% CLT UCL	98.36	95% Jackknife UCL	100.9
499	95% Standard Bootstrap UCL	96.4	95% Bootstrap-t UCL	161.4
500	95% Hall's Bootstrap UCL	205.8	95% Percentile Bootstrap UCL	101.4
501	95% BCA Bootstrap UCL	108		
502	90% Chebyshev(Mean, Sd) UCL	116.7	95% Chebyshev(Mean, Sd) UCL	135.1
503	97.5% Chebyshev(Mean, Sd) UCL	160.6	99% Chebyshev(Mean, Sd) UCL	210.7
504	-			
505			UCL to Use	102
506	95% Student's-t UCL	100.9	or 95% Modified-t UCL	103
507	Note: Suggestions regarding the selection of a 0.5%		ovided to help the user to select the most appropriate 9	5% 1101
508		-	mulation studies summarized in Singh, Singh, and Iaci	
509			ns results will not cover all Real World data sets.	(2002)
510			ay want to consult a statistician.	
		are user if	ay want to consult a statisticidil.	
511 512				